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Abstract

The increase in availability and reduction in cost of commercial communication de-

vices (e.g. IEEE compliant such as 802.11, WiFi, 802.16, Blutooth etc.) has increased

wireless user exposure and the need for techniques to properly identify/classify signals

for increased security measures. Communication device emissions include intentional

modulation that enables correct device operation. Hardware and environmental fac-

tors alter the ideal response and induce unintentional modulation effects. If these

effects (features) are sufficiently unique, it becomes possible to identify a device us-

ing its fingerprint, with potential discrimination of not only the manufacturer but

possibly the serial number for a given manufacturer.

Many techniques in many domains have been investigated to extract features,

identify a fingerprint, classify signals, and each technique has certain benefits and

limitations. Previous AFIT research has demonstrated the effectiveness of RF Fin-

gerprinting using 802.11A signals with 1) spectral correlation on Power Spectral

Density (PSD) fingerprints, 2) Multiple Discriminant Analysis/Maximum Likelihood

(MDA/ML) classification with fingerprints obtained from Time Domain (TD) and

Wavelet Domain (WD) statistical features. Performance “gain”, defined as the differ-

ence in Signal-to-Noise ratio (SNR) required to achieve comparable classification per-

formance, has been used to demonstrate considerable improvement. Spectral Domain

(SD) fingerprinting uses PSD features for device discrimination. Results presented

here show some improvement over the WD approach (gain ≈ 3 dB) and significant

improvement over the TD approach (gain ≈ 8 dB).
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Spectral Domain RF Fingerprinting

for 802.11 Wireless Devices

I. Introduction

1.1 Motivation

The increase in availability and reduction in cost of commercial communication

devices (e.g. IEEE compliant such as 802.11, WiFi, 802.16, Blutooth etc.) has

increased wireless user exposure and the need for techniques to properly identify/-

classify signals for increased security. Communication device emissions include inten-

tional modulation that enables correct device operation. This intentional modulation

may be remotely intercepted, where the interceptor may be passive (listen, monitor,

record, analyze, etc.) or become active such as “spoofing” or even inject traffic into

the system.

A great deal of research has focused on traditional bit-level algorithmic approaches

to mitigate spoofing and improve network security [8]. More recent research has

been accomplished to detect and mitigate spoofing within or near the lower levels

of the Open System Interconnection (OSI) architecture. One work suggests using

a “lightweight security layer” within the Medium Access Control (MAC) layer for

anomalous traffic and spoofing detection [8].

The goal of other recent work tries to exploit Radio Frequency (RF) characteristics

at the Physical (PHY) layer that are difficult to mimic, thus minimizing spoofing

opportunities [13]. The fundamental research goal in [15, 16, 17] involved developing

RF fingerprinting techniques to obtain a Specific Emitter Identification (SEI) similar

1



to that used to distinguish radar emitters [9].

Spanning nearly twenty years, radar SEI uses parameters based on intentional

modulation applied within a given pulse (intra-pulse modulation) or applied across

multiple pulses (inter-pulse modulation). Hardware and environmental factors such

as poor system design, improper operation, and physical device limitation alter the

ideal signal response and induce unintentional modulation effects. At the waveform

level, these unintentional modulation effects are similar to what occur in existing

wireless communication systems that transmit burst-like waveforms representing dig-

ital information such as symbols, bits, or packets. If the unintentional modulation

effects (features) are sufficiently unique it becomes possible to identify a given device

using its fingerprint, with potential discrimination of not only the manufacturer but

also serial number for a given manufacturer.

1.2 Problem Statement

The RF fingerprinting process is separated into four phases, including: 1) burst

detection, 2) signal region of interest selection and feature extraction, 3) fingerprint

generation, and 4) fingerprint classification of unknown received signals. These phases

are the basis for many fingerprinting techniques, with each focusing on different signal

features in different domains: Wavelet Domain (WD), Time Domain (TD) and/or

Spectral Domain (SD).

Many techniques in many domains have been investigated to extract features,

identify a fingerprint, classify signals, and each has certain benefits and limitations.

This research uses the TD and WD process developed in previous research to cor-

rectly classify emissions from Orthogonal Frequency Division Multiplexing (OFDM)

802.11A signals using SD features. The process is then applied to a Direct Sequence

Spread Spectrum (DSSS) 802.11B signal.

2



1.3 Related Research

This research builds on accomplishments from three previous works [1, 5, 15].

The work in [15] focused on detection and identification of GMRS/FRS press-to-talk

radios and 802.11A network device RF transmission. The features included instan-

taneous amplitude, instantaneous phase, and instantaneous frequency. These were

used to calculate statistics for feature characterization to identify unique fingerprints.

Two methods of classification were used for 802.11A devices: spectral-based corre-

lation which produced classification accuracies up to 74% for SNR = -3 to 6 dB ,

and Multiple Discriminant Analysis/Maximum Likelihood (MDA/ML)-based classi-

fication which produced classification accuracies of 74% to 90% for the same values

of SNRs.

The work in [5] explored burst detection techniques to identify the feasibility and

repeatability of detecting and locating the start of a waveform burst. Two techniques

were utilized: Fractal Baysian Step Change Detector (Fractal-BSCD) and Traditional

Variance Trajectory (VT). A newly developed WD fingerprinting technique provided

improved performance over previous TD techniques [15, 16, 17], with 2-7 dB of gain

improvement realized at 80% classification.

The work in [1] proposed a new transient-based identification method for DSSS

802.15 CC2420 wireless sensor nodes and explored various transformation methods

for input data into a Linear Discriminant Analysis (LDA) feature extractor. The

transformation that yielded the highest recognition accuracy was based on the relative

difference between adjacent Fast Fourier Transform (FFT) spectra. The so called

Prop method produced recognition results with an Equal Error Rate (EER) as low

as 0.24%.

As described in greater detail throughout this document, this research focuses on

SD fingerprinting using Power Spectral Density (PSD) fingerprinting features gener-
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ated from common statistics (variance, skewness, and kurtosis) to formulate unique

fingerprints for signal classification.

1.4 Resources

AFIT provided a number of tools used throughout this research. All signal data

were collected using the Agilentr-based RF Signal Intercept and Collection Sys-

tem (RFSICS). The RFSICS consists of the following pieces of equipment: Agilentr

E3238s system hardware and an HP Compaq nc8430 laptop computer equipped with

the Agilentr E3238s and Vector Signal Analyzer (VSA) software tools. Two Dell

laptops were used and equipped with 802.11 wireless cards specified in Table 1.1. All

post-processing was accomplished using MATLABr version 7.7.0 (R2008b).

Table 1.1. Device manufacturer, serial number, and signal type (802.11A and 802.11B)
used for generating Chapter 4 results.

Manu Serial Number / Signal Type
Cisco N4U9 / A&B N4UD / A&B N4UW / A&B N4PX / A&B

Linksys 0306 / B 0307 / B 361 / B
Netgear 0209 / B 0217 / B 273 / B

1.5 Thesis Organization

Chapter II provides background information on RF DNA fingerprinting, Fisher

Linear Discriminant (FLD), Spectral Correlation, Baysian Decision Theory, and MDA/ML

classification. Chapter III describes the research methodology and overall process for

signal collection, post-collection processing, digital filtering, region of interest selec-

tion, SD signal transformation and fingerprint feature generation for MDA/ML classi-

fication. Chapter IV presents results obtained from the process discussed in Chapter

III for the signals of interest. Chapter V provides conclusions based on results in

Chapter IV and suggest areas for further investigation and research. Appendix A
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provides a detailed process for RFSICS signal collection as used to obtain all data for

this research.
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II. Background

2.1 Overview

The material presented in this chapter lays the ground work for the methodology

described in Chapter III along with the results presented in Chapter IV. Section 2.2

provides an introduction to RF fingerprinting. Section 2.3 discusses Power Spectral

Density (PSD)-based fingerprinting, Section 2.4 discusses Bayes Decision Theory ap-

plied to classification, Section 2.5 discusses the feature statistics used to create the

statistical fingerprints used for classification, and Section 2.6 provides insight into

the Multiple Discriminant Analysis/Maximum Likelihood (MDA/ML) classification

method used for generating classification results described in Chapter IV.

2.2 RF Fingerprinting

RF Distinct Native Attribute (DNA) fingerprinting is the process used to iden-

tify and classify unique radio transmission characteristics from a device of interest.

RF fingerprint classification embodies four phases which include: burst detection,

waveform feature generation (amplitude, phase, frequency, PSD), fingerprint extrac-

tion, and device classification. Feature extraction determines which domain (time,

frequency, or spectral) yields specific signal information (features). Transient start

detection is needed to determine where the signal starts for Region of Interest (ROI)

selection.

Once the feature and ROI have been selected, statistics (mean, variance, skewness,

kurtosis) can be calculated and extracted to determine the unique signal fingerprint.

Fingerprint classification determines how well the fingerprint of one device can be

identified or differentiated from another device.
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2.3 PSD-based Fingerprinting

The PSD describes the distribution of signal power in the frequency domain [14],

which is important because it identifies the frequency components having strong or

weak variation. Since frequency is derived from a transformation of time responses,

frequency domain variation provides alternative time domain processing. Previous

work [15, 16, 17] used PSD fingerprints along with spectral correlation for device

classification. The process involved generating reference PSD fingerprints {Φm,r(k)}
for each class m ∈ M :

Φm,r(k) =
1

NT

NT∑
i=1

Φi(k), (1)

where NT is the number of collected training signals and Φi(k) is the un-normalized

PSD sequence of the ith collection from class m [15]. To eliminate any power bias

present from the signal collection process, each reference PSD fingerprint is normalized

to unit power.

Classification was accomplished by cross-correlating each PSD with the average

reference fingerprint from each class [15, 16, 17]. At a Signal-to-Noise Ratio (SNR)

approaching 6 dB, classification accuracies of 74% were achieved using this PSD-based

spectral-correlation classification process [15, 16, 17].

Additional spectral-based work in [1] used FFT-based Fisher-features to finger-

print 802.15.4 CC2420 DSSS devices. Several transformation variants were investi-

gated for recognition, and the so-called Prop method (difference between adjacent

FFT spectra) yielded the highest recognition accuracy.

The feature extraction process in [1] involved extracting the transient part of the

signal, where the amplitude of the signal l at time t is f(t, l). Once the transient part
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of the signal was extracted, a one-dimensional Fourier transform was calculated:

F (ω, l) =
1√
M

M−1∑
m=0

f(t, l)exp(−2πi
tω

M
), (2)

where 0 ≤ t ≤ M − 1 and M is the number of samples in the transient part of the

signal. For the Prop method, the relative difference between adjacent FFT spectra

in (2) was calculated using

−→sl =
[|F (2, l)| − |F (1, l)|, |F (3, l)| − |F (2, l)|, · · ·, |F (M

2
− 1, l)| − |F (M

2
− 2, l)|] (3)

with the DC component and the redundant half of the spectrum removed [1]. The

Fisher-feature is a projection vector −→gl extracted from the Fourier spectrum using

the LDA matrix WL, where

−→gl = W t
L
−→sl . (4)

The Fisher-feature G for a given device of N captured signals is an array of gl elements

from (4) defined as

G = W t
LS, (5)

where S is a matrix such that S = [s0..s1..sN ] (4). Finally, a feature template h is

used for recognition calculated from the mean vector and covariance matrix of G.

Using this process [1] reported results of EER 0.24%, meaning that the recognition

system correctly identifies a sensor node with 99.5% accuracy.

2.4 Bayesian Decision Theory

The classification method of Bayesian decision theory [2] takes d -dimensional data

belonging to one of c classes of data based on probability densities, prior probabilities,

and any costs associated with making a classification decision [2]. Decision boundaries
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are defined within the feature space that reduce the probability of misclassification

of the input data from the c classes of data. The Gaussian density function is used

as the probability model for Bayesian classification given by

p(y) =
1√
2πσ

exp

[
−1

2

(
y − µ

σ

)2
]

, (6)

where σ is the standard deviation and µ is the mean.

To minimize probability of misclassification, decision boundaries are formed using

(6) as the distribution model for the vectors in the feature space. According to Bayes’

rule, the posterior probability P (ωj|y) is given by a set of c total classes,{ω1, ..., ωc},
and a d -dimensional feature vector y yield the equation

P (ωj|y) =
p(y|ωjP (ωj)

p(y)
, (7)

where class ωj contain the feature vector, and

p(y) =
c∑

j=1

p(y)P (ωj) (8)

contains the conditional probability p(y|ωj) and prior probability P (ωj). A decision

rule is a goal that lessens the risk associated with making a decision. Assuming that

action αi is taken based on the occurrence of of y from ωj, the conditional risk is

R(αi|y) =
c∑

j=1

λijP (ωj)∀i = 1, ..., a, (9)

where a is the number of possible action and the cost of choosing ωi when ωj occurred

is λij. The Bayes decision rule chooses the ωj that minimizes R(αi|y) for all actions

a. To minimize the probability of misclassification and divide the feature space into

c regions, y is assigned to the class with the minimum R(αi|y), thus reducing the
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decision rule to [2]

(λjk − λkk)p(y|ωk)P (ωk) ≷ωj
ωk

(λkj − λjj)p(y|ωj)P (ωj), ∀j 6= k. (10)

Assuming uniform costs and equal prior probabilities, (P (ωj) = P (ωk),∀j 6= k), (10)

the result is

p(y|ωk) ≷ωj
ωk

p(y|ωj),∀j 6= k. (11)

A point belonging to ωj assigned to ωk registers as a misclassification. The total

probability of making a classification error is

PE =
∑

j,k
j 6=k

= P [Classify as ωj|ωk is true] . (12)

The univariate Gaussian distribution presented in (6) is insufficient for multi-class

analysis. The multivariate model used for two classes in d -dimensions given by

p(y) =
1

(2π)
d
2 |∑ | 12

exp

[
−1

2
(y− µ)t

−1∑
(y− µ)

]
, (13)

where µ is the d -component mean vector, y is a d -component column vector, and
∑

is the d× d covariance matrix

∑
= E

[
(y− µ)t(y− µ)

]
. (14)

Here the E[·] notation represents the statistical expected value or sample mean. Fig-

ure 2.1 shows projected probability densities of the multivariate Gaussian model for

a c = 3 class problem with d = 2 dimensional feature space. As shown projected

onto the lower plane, the decision boundaries are used to calculate the total analytic

probability of classification error.
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Figure 2.1. Example of the Multivariate Gaussian Model for a c=3 class problem and
a d=2 dimensional feature space, where decision boundaries are shown projected onto
lower plane.

2.5 Feature Statistics

Using the entire signal characteristic (feature) for the fingerprint, as described in

Section 2.3, may be unrealistic if computational processing time or data storage is

limited. Previous work [5, 6, 7, 11, 12, 15, 16, 17] made use of statistical behavior

inherent in signal characteristics to reduce the dimensionality of the fingerprints. To

coincide with previous work in [5, 6, 7], the statistics of variance (σ2), skewness (γ),

and kurtosis (κ) are used here to create statistical fingerprints for classification. These
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statistics are obtained as follows:

σ2
x =

1

Nx

Nx∑

k=1

[x(k)− x̄]2 , (15)

γx =

1
Nx

Nx∑
k=1

[x(k)− x̄]3

{
1

Nx

Nx∑
k=1

[x(k)− x̄]2
}3/2

, (16)

κx =

1
Nx

Nx∑
k=1

[x(k)− x̄]4

{
1

Nx

Nx∑
k=1

[x(k)− x̄]2
}2 , (17)

where x is the sample mean of an arbitrary sequence {x(k)} and k = 1, 2, ..., Nx. The

final RF statistical fingerprints were obtained in previous work [5, 6, 7, 11, 12, 15, 16,

17] by calculating these statistics from various signal characteristics (instantaneous

amplitude, instantaneous phase, and or instantaneous frequency). For work presented

here, the PSD statistics are used to form spectral-based fingerprints.

2.6 MDA/ML Classification

While there are many methods for classification, they all fundamentally involve

using a subset of the input data to train the classifier and the remaining data for

classification itself. Attempting to classify higher-dimensional data becomes difficult

without the use of the Fisher Linear Discriminant (FLD), which projects higher-

dimensional input data into a lower dimensional space while producing maximum

separation between the classes [2].

Although FLD can be applied to any number of inputs, MDA/ML is an extension

of FLD for three classes of input data [2, 3]. Discriminating between c classes of

input data containing d -dimensions, linearly projecting the input vector x onto a
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(d -1)-dimensional space can be obtained through

y = WTx , (18)

where the vector of projected values y corresponds to the input vector x and the

transformation matrix W has dimensionality d × (c - 1) [2]. Classification is accom-

plished using ML distributions to calculate 2-dimensional decision boundaries used

on unknown input data. Figure 2.2 pictorially represents the MDA/ML training

and classification process, where the decision boundaries are calculated from the ML

distributions (top) and the projected data is used for classification (bottom).
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Figure 2.2. MDA/ML Training (top) and Classification (bottom) [5].
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III. Methodology

3.1 Overview

This chapter describes signal detection and classification process used for this re-

search. The process here is consistent with previous work [5, 6, 7] and is illustrated in

Figure 3.1 [5, 6, 7]. Section 3.2 provides details for the Signal Collection process using

AFIT’s RF Signal Intercept and Collection System (RFSICS). Section 3.3 describes

post-processing collection procedures, which include down-conversion, filtering, burst

sorting, and analysis signal generation. Section 3.4 describes the process for RF

statistical fingerprint generation, which includes PSD calculation, region of interest

selection, and statistical feature calculation. Section 3.5 discusses the MDA/ML sig-

nal classification process which was used to generate all classification results presented

in Chapter 4.

Figure 3.1. Process used for signal collection, detection, analysis signal generation, and
classification of 802.11 signals [5, 6, 7].
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3.2 Signal Collection

All data used for this research was collected in accordance with the RFSICS

collection process outlined in Appendix A. Prior to making collections, two separate

laptops were configured as a peer-to-peer network using 802.11 wireless cards. The

cards were powered up, set to the appropriate operating mode (802.11A or 802.11B),

and information is transferred from one to the other while the RFSICS is operating

in collection mode.

The signal-of-interest (SOI) center frequency is located using a wide band search

spanning 20.0 MHz and 6.0 GHz. After the SOI is located, the 36 MHz RFSICS front-

end filter is tuned and centered on the dominant spectral response. To maximize the

collected signal-to-noise ratio (SNR) and to reduce amplitude clipping, the RFSICS

Analog-to-digital (ADC) dynamic range is set manually. The signal is then down-

converted by the RFSICS, sampled by a 12-bit ADC, and stored as complex I-Q

data.

The data is stored using an Agilentr proprietary “capture” (*.cap) format and

subsequently converted to a MATLABr (*.mat) format for post-collection process-

ing. This research only used the real component of collected signals. Representative

collected burst responses from 802.11A/B devices are shown in Figure 3.2.
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Figure 3.2. Representative magnitude responses for bursts collected from 802.11A
(top) and 802.11B (bottom) devices.
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3.3 Post-Collection Processing

The MATLABr (*.mat) formatted data is a vector of sampled data for each

burst. Pulse detection and sorting makes it possible for each burst to be examined

separately. Each burst is extracted and stacked separately into one row of a given

matrix for easy access and examination. Each collected burst response is baseband

filtered using a 6th order Butterworth filter having a baseband bandwidth of BW =

7.7 MHz. Previous work [5, 6, 7] showed that BW = 7.7 MHz provides maximum

classification performance when using the 802.11A preamble as the region of interest

(ROI). After filtering, the preamble region is extracted and stored in a new matrix

for subsequent fingerprint generation.

3.3.1 Pulse Detection and Sorting.

Collections of 802.11 data are initially in vector form, where each burst is extracted

and placed into row matrix form. A pulse detection algorithm is used with adjustable

characteristics (desired detection threshold, minimum/maximum length, number of

bursts, smoothing factor) to extract and sort each burst and placed into a matrix.

These adjustable characteristics are used since not all bursts in the collection fit the

criteria (minimum/maximum length). The algorithm first smooths (averages) over a

given number of samples, specified as the smoothing factor. It then detects a burst at

the desired detection threshold value (tD = -3 dB) and locates this point at both ends

of the burst. Finally, it checks to see if the burst is wider than the minimum value

but narrower than the maximum value. This process produces a matrix where all

undesirable bursts have been removed, leaving bursts meeting the criteria for further

post-processing. Figure 3.3 illustrates the process over a small region of the original

802.11B collected data.
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Figure 3.3. Representation of the burst extraction process, where a burst having insuf-
ficient width is rejected and bursts meeting pulse width criteria are placed in a matrix
for post collection processing.

3.3.2 Preamble Region Extraction and Filtering.

According to 802.11A signal specifications, the preamble region contains informa-

tion at the beginning of each burst to aid in diversity selection, timing/frequency

acquisition, and channel estimation [4]. Figure 3.4 shows the preamble region of the

802.11A signal.
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Figure 3.4. Representation 802.11A signal with preamble region highlighted (left) with
structure (right).

3.4 Statistical Fingerprint Generation

Once the signal preamble region is filtered and extracted, the bursts are used

to calculate statistical RF fingerprints that are input to the MDA/ML classification

process. The PSD feature is first calculated and normalized according to (21). The

DC component and redundant half of the data are removed. Regional variation

analysis is then used to determine a specific number of regions (NR) for subdividing

the PSD feature. Consistent with previous work, the statistics of interest here include

variance, skewness, and kurtosis. These features are calculated over each PSD region

that makes up a fingerprint matrix which is input to the MDA/ML classification

process.
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3.4.1 Power Spectral Density (PSD) Calculation.

The PSD is obtained through the discrete Fourier transform (DFT) of a complex

sequence {x(n)},

X(k) =
1

Nx

Nx∑
n=1

x(n)exp

[
−j(

2π

Nx

)(n− 1)(k − 1)

]
(19)

where n = 1, 2, ..., Nx [10]. To reduce potential amplitude bias from the collection

process, the normalized PSD is calculated. First, the total average power is calculated

using

Xp =
1

Nx

Nx∑

k=1

x(k)x∗(k), (20)

where ∗ denotes complex conjugate and Nx is the total number of samples. The

expression in (20) along with the PSD expression in (19) is used to form the normalized

PSD given by

φx(k) =
1

Xp

|X(k)|2 =
1

Xp

{Re2 [X(k)] + Im2 [X(k)]}. (21)

The DC component (k = 0) is removed, and the redundant half discarded (k =

1, 2, ..., Nx

2
) to form statistical fingerprints. Figure 3.5 shows the calculated normalized

PSD (Figure 3.5(a)) for an 802.11A signal from Figure 3.2 using (21) along with the

portion (Figure 3.5(b)) used for fingerprint generation (DC component and redundant

half removed, highlighted in Figure 3.5(a)).
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Figure 3.5. Representative PSD responses (a) and portion (highlighted) used for fin-
gerprint generation with redundant half removed (b).

22



3.4.2 Region Selection and Feature Calculation.

Region selection is based on analyzing the output of the classification process

with the collected SNR = 40 dB and NR varied from 3 to 21. Figure 3.7 shows

classification performance for NR variation at 40 dB. These results indicate that NR

= 13 is optimal and thus NR = 13 was used for all 802.11A results presented in Chapter

4. The selected value NR = 13 is used to subdivide (Figure 3.7) the preamble PSD
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Figure 3.6. Classification performance versus number of regions (NR) for SNR = 40
dB with NR = 13 selected and used for all 802.11A results.

into 12 subregions which are then used to calculate the statistics for each region. The

statistics for the entire preamble PSD are also calculated and appended at the end

of the matrix to form an NR = 13 regions with 12 subregions. For consistency with

previous research on 802.11A data [5, 6, 7], the statistics of variance (σ2), skewness

(γ), and kurtosis (κ) are calculated over each region to form the statistical fingerprint

as illustrated in (22). This process is repeated for each burst, then placed into a

fingerprint matrix that is input into the classification process. Using the expression
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in (22) with NR = 13 regions, the fingerprint matrix

FRi
=

[
σ2

i γi κi

]
i=1...NR

⇒ [FR1FR2 ...FRi
] (22)

that is input to the Fisher Training Process represents 39-dimensional data (1 PSD

Feature × 13 Regions × 3 Statistics).

Figure 3.7. Subdivision of PSD in Figure 3.5 into NR = 13 total regions for feature
calculation.

3.5 Signal Classification

The 39-dimensional fingerprint data obtained from Section 3.4.2 is input to the

MDA/ML training and classification process. The input data is calculated for three

different classes, where each class represents bursts from a specific 802.11 device.

Following the training process, signal classification is implemented as described in

Section 3.3. Monte Carlo simulation (noise generation, scaling and addition) and

K-fold cross validation are used in the MDA/ML signal classification process. Monte

Carlo simulation ensures statistical significance of data by running the event multiple
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times, while K-fold cross validation randomly partitions the original data into K

blocks with K-1 blocks used for MDA/ML training and the remaining block used

for ML classification. The overall process for MDA/ML training and classification is

shown in Figure 3.8 [18].

Figure 3.8. MDA/ML classification process with K-fold cross validation [18].
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IV. Results and Analysis

4.1 Overview

This chapter provides results and analysis of classification performance for 802.11A/B

signals based on processes outlined in Chapter 3. This research follows previous work

[5, 6, 7, 11, 12, 17, 16, 15] for OFDM 802.11A signals using a PSD-based transfor-

mation. The process for 802.11A signals is repeated for DSSS 802.11B signals to see

how well other signals can be identified and classified. This chapter includes a section

for 802.11A SD performance results and comparison with WD and TD taken from

[5, 6, 7], a section for 802.11B SD performance results including the Prop method

discussed in [1], and finally a section for comparing 802.11A results with those of

802.11B.

4.2 SD Performance: 802.11A signals

Intra-manufacturer discrimination follows previous research [5, 6, 7] using four

Cisco devices transmitting 802.11A signals, where the permutations are shown in Ta-

ble 4.1. These are like-mode devices from the same manufacturer (Cisco) and only

differ in serial number. It is assumed that they have been manufactured under iden-

tical environmental conditions, from identical lots, using identical components, with

identical processes. Intra-manufacturer classification is generally the most difficult (as

compared with inter-manufacturer) due to the devices having similar physical prop-

erties, varying slightly due to the make of the device (serial number discrimination).
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Table 4.1. 802.11A Cisco intra-manufacturer permutations [5, 6, 7].

Serial Number
Perm N4U9 N4UD N4UW N4PX

1 × × ×
2 × × ×
3 × × ×
4 × × ×

According to results in [5, 6, 7], Permutation #1 presented the “most stressing”

condition for classification and yielded poorest performance for all SNR = -3 to 40 dB.

Figure 4.1 results are taken directly from [5, 6, 7] and illustrate intra-manufacturer

classification accuracy for all four permutations in Table 4.1 using previous TD and

WD fingerprinting techniques. As shown, Perm #1 reflects the poorest performance

for both techniques. Considering permutation averages, WD provides approximately

6 dB of “gain” at 80% classification accuracy.
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Figure 4.1. Intra-Manufacturer MDA/ML Classification using TD and WD finger-
prints: All Permutations for Cisco devices transmitting 802.11A signals. Figure and
results taken directly from [5, 6, 7].
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Figure 4.2 shows new SD classification results for all four Cisco permutations in

Table 4.1. The mean across all permutations is shown with filled markers. These

results demonstrate that Permutation #1 and Permutation #3, both of which con-

tain serial numbers N4UD and N4UW, present the most stressing cases of the four

permutations. As with previous TD and WD results in [5, 6, 7], Perm #1 is again

the “most stressing” case for most SNRs considered.
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Figure 4.2. Intra-Manufacturer MDA/ML Classification using SD fingereprints: All
Permutations for Cisco devices transmitting 802.11A signals.

Table 4.2 provides classification confusion matrices for Perm #1 of the Cisco

devices for signals at SNR = 14 dB. Results for TD and WD are taken directly

from [5, 6, 7] and provided for comparison. Classification accuracies for a specific

class (device) are presented along the diagonal. The lower two matrices demonstrate

performance differences between SD and TD/WD, respectively. SD provides improved

performance over TD across all three devices, with greatest improvement of 28.5%
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achieved for correctly classifying Class A. SD provides some improvement over WD

for correctly classifying Class A (8.4%) and Class C (0.8%), and some degradation in

classifying Class B.
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Table 4.2. Intra-manufacturer confusion matrices for SD, TD and WD fingerprinting:
Permutation #1 from Table 4.1 with 802.11A signals at SNR = 14 dB. (TD and WD
results from [5, 6, 7]).

SD Class Estimate
Input Class A B C

A 77.9% 5.2% 16.9%
B 6.0% 93.9% 0.1%
C 21.7% 0.3% 78.0%

TD Class Estimate
Input Class A B C

A 49.4% 17.3% 33.3%
B 18.5% 65.9% 15.6%
C 34.2% 12.1% 53.6%

WD Class Estimate
Input Class A B C

A 69.5% 5.9% 24.5%
B 5.3% 94.0% 0.7%
C 21.5% 1.3% 77.2%

SD - TD Class Estimate
Input Class A B C

A 28.5% -12.1% -16.4%
B -12.5% 28.0% -15.5%
C -12.5% -11.8% 24.4%

SD - WD Class Estimate
Input Class A B C

A 8.4% -0.7% -7.6%
B -0.7% -0.1% -0.6%
C 0.2% -1.0% 0.8%
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Figure 4.3 shows average classification results across all four permutations for the

three fingerprint generation methods WD, TD and SD, as taken from Figure 4.1 and

Figure 4.2. At 80% classification accuracy, SD outperforms TD and provides a gain

of approximately 8 dB. While the SD performance is generally consistent with WD

performance, there is some statistical improvement (1%-3%) for SNR = -3 to 25 dB.
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Figure 4.3. Intra-Manufacturer MDA/ML Classification: Average performance across
all four permutations of four Cisco devices transmitting 802.11A signals. TD and WD
results from 4.1 and SD results from 4.2.

In operational situations where equipment may not be co-located, or operates in

dissimilar environments (such as laboratory equipment) or when aligned at the 3db

point of the collected signal, the collected signals and burst start location can be

affected. This effect is referred to here as timing “jitter”. When the collected signals

are aligned “perfectly”, or at the approximate identical sample number, the effect is

referred to as “perfect”. The “jitter” effect on classification performance is illustrated

in Figure 4.4, where the signals were detected using a tD = -3 dB threshold.

The “jitter” effect can be seen in Figure 4.5, which overlays the “perfect” align-

31



−5 0 5 10 15 20 25 30 35 40
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Classification SNR (dB)

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

 

 

SD Mean
SD Perm 1
SD Perm 2
SD Perm 3
SD Perm 4

Figure 4.4. Intra-Manufacturer MDA/ML Classification: “Jittered” Classification Per-
formance using all Permutations for Cisco devices transmitting 802.11A signals.

ment with that of the “jittered” collections. As can be seen, the effect at higher

SNR values is more susceptibility to jitter than the lower SNR values, where the “jit-

tered” results show minimal degradation. Intra-manufacturer classification results for

all three fingerprinting methods (TD, WD, and SD) for observed burst location error

“jitter” using Perm #2 from Table 4.1 are shown in Figure 4.6, where performance for

TD and WD were taken directly from [5, 6, 7]. Results in Figure 4.6 also demonstrate

SD performance improvement over TD and further show that SD is less susceptible

to ”jitter”. The results reflect that the TD technique is susceptible to phase shift

while the WD and SD are not.
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Figure 4.5. Average MDA/ML Classification accuracy for 802.11A intra-manufacturer
discrimination using average “perfect” results from Figure 4.2and average “jittered”
results from Figure 4.4.
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Figure 4.6. Average MDA/ML Classification: Comparison of “perfect” and “jittered”
802.11A intra-manufacturer discrimination using observed burst location error statis-
tics. TD and WD results taken directly from [5, 6, 7].
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4.3 SD Performance: 802.11B signals

This section is divided into two subsections and presents results on intra/inter-

manufacturer performance using devices transmitting 802.11B signals. Intra-manufacturer

discrimination follows Section 4.2 with devices transmitting 802.11B signals for all

permutations and worst case Perm #1 shown in Table 4.1. To investigate and com-

pare intra-manufacturer performance between manufacturer, three devices from each

Linksys and Netgear were used as well as the three Cisco devices to see how well

serial number discrimination can be performed using the SD fingerprint method. Ta-

ble 4.3 shows all devices (used for 802.11B inter-manufacturer discrimination where

the permutations are shown with the “×”s in the table).

Table 4.3. 802.11B inter-manufacturer permutations.

Serial Number
Manufacturer Cisco Linksys Netgear

Perm N4U9 N4UD N4UW 306 307 361 209 217 273
1 × × ×
2 × × ×
3 × × ×

4.3.1 802.11B Intra-Manufacturer Performance.

Intra-manufacturer discrimination was performed using devices transmitting 802.11B

signals for all four Cisco devices shown in Table 4.1 as well as all three Netgear and all

three Linksys devices shown in Table 4.3. Figure 4.7 shows classification performance

for all permutations, where the mean is shown with filled markers.
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Figure 4.7. Intra-Manufacturer MDA/ML Classification using SD fingerprints: All
Permutations for Cisco devices transmitting 802.11B signals.

Figure 4.8 shows classification performance using Cisco Perm #1 as well as all

three devices for Linksys and Netgear shown in Table 4.3. As can be seen, the

Cisco and Linksys devices are consistent, while the Netgear has a slight increase in

performance. Since this is intra-manufacturer discrimination, the results indicate that

the Netgear performance is actually poorer compared to the Cisco and Linksys results,

because similar devices should be confused more with each other and performance

degraded.
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Figure 4.8. Intra-Manufacturer MDA/ML Classification using SD fingerprints: Three
devices per manufacturer with serial numbers listed in Table 4.3 with devices trans-
mitting 802.11B signals.

4.3.2 802.11B Inter-Manufacturer Performance.

Inter-manufacturer discrimination was performed using permutations in Table 4.3.

Results for three permutation are illustrated in Figure 4.9. Perm #2 and Perm #3

demonstrate consistent results. At 80% classification accuracy, Perm #1 provides a

gain of approximately 3 dB over Perms #2 and Perm #3.
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Figure 4.9. Inter-Manufacturer MDA/ML Classification using SD fingerprints: Per-
mutations from Table 4.3 with devices transmitting 802.11B signals.

4.3.3 802.11B Prop Method Performance.

Work in [1] for DSSS-based 802.15.4 CC2420 devices used a Prop method (dif-

ference in adjacent FFT spectra) that provided the highest recognition accuracy of

99.5%. Figure 4.10 illustrates Perm #2 (top) and Perm #3 (bottom) of the inter-

manufacturer permutations overlayed with their respective Diff method results. As

can be seen, performance is consistent with the standard SD method. The results

for Perm #2 (Figure 4.10 bottom) indicate that the Prop method achieves slight

improvement from SNR = 4 to 15 dB, while the Prop method performance is poorer

(approximately 2-3 dB) using the devices for Perm #3 (Figure 4.10 bottom).
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Figure 4.10. Inter-Manufacturer MDA/ML Classification using SD fingerprints: SD
comparison with Prop using Perms #2 (top) and Perm #3 (bottom) from Table 4.3
with devices transmitting 802.11B signals.
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4.4 SD Performance Comparison: 802.11A/B signals

Figure 4.11 shows a comparison of the SD technique performance for the worst

case Perm #1 of 802.11A compared with Perm #1 of 802.11B, where the devices

in each permutation contain identical serial numbers (Table 4.3 and Table 4.1). As

can be seen, the SD method applied to 802.11B signals provides an improved gain of

approximately 3 dB (although 802.11B preamble lacks the structure of the 802.11A

signals), and there are clearly discriminating characteristics in this region to provide

these classification results.
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Figure 4.11. Intra-Manufacturer MDA/ML Classification using SD fingerprints: SD
performance comparison of 802.11A with 802.11B signals for worst case Perm #1.

Figure 4.12 shows mean results taken from Figure 4.4 and Figure 4.7. These

results demonstrate overall improved performance among 802.11B signals at SNR =

30 to -3 dB, and approximately 3 dB gain at 80% classification accuracy.
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Figure 4.12. Intra-Manufacturer MDA/ML Classification using SD fingerprints: SD
performance comparison of 802.11A with 802.11B signals for permutation means taken
from Figure 4.4 and Figure 4.7.

Table 4.4 provides classification confusion matrices for Perm #1 (Table 4.1) of

the Cisco devices for signals at SNR = 14 dB, where the results for 802.11A were

taken from Table 4.2. Classification accuracies for a specific class (device) are pre-

sented along the diagonal, where 802.11B achieves an 88.3% classification accuracy

and 802.11A achieves 83.3% (Figure 4.11). The lower matrix demonstrate perfor-

mance differences between 802.11B and 802.11A. As can be seen, 802.11B provides

improved performance over 802.11A across devices A and C, with the greatest im-

provement of 17.6% achieved for correctly classifying Class A. The lower matrix also

demonstrates some degradation in classifying Class B for 802.11B vs 802.11A.
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Table 4.4. Intra-manufacturer confusion matrices for 802.11A, and 802.11B fingerprint-
ing: Permutation #1 from Table 4.1 with signals at SNR = 14 dB.

802.11A Class Estimate
Input Class A B C

A 77.9% 5.2% 16.9%
B 6.0% 93.9% 0.1%
C 21.7% 0.3% 78.0%

802.11B Class Estimate
Input Class A B C

A 95.5% 0.8% 3.7%
B 1.2% 88.9% 9.9%
C 2.9% 16.7% 80.4%

B - A Class Estimate
Input Class A B C

A 17.6% -4.4% -13.2%
B -4.8% -5.0% -9.8%
C -18.2% 13.8% 2.4%

The uniqueness of fingerprint statistical features is illustrated in Figure 4.13.

These RF DNA plots were generated by randomly selecting 200 collected bursts for

each device, scaling them to achieve SNR = 14 dB, and averaging the corresponding

statistical fingerprints. The number of DNA markers per segment is identical for both

802.11A and 802.11B. The y-axis labels correspond to the statistical measures defined

in Section 2.5. The RF fingerprints (Figure 4.13) are from one manufacturer (Cisco)

where the serial numbers are identified on the x-axis. Previous results in this chapter

showed that greater uniqueness translates to better overall classification performance.

When comparing Table 4.4 with Figure 4.13 for 802.11A, it can be seen that Class A

and C are most confused.
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Figure 4.13. Intra-manufacturer RF fingerprint DNA plots showing worst case Perm
#1 of (a) 802.11A and (b) 802.11B fingerprints based on 200 randomly selected bursts
at SNR = 14 dB.
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V. Conclusions and Future Work

5.1 Conclusions

The increase in availability and reduction in cost of commercial communication

devices (IEEE compliant such as 802.11, 802.15 Bluetooth, 802.16, WiMax, etc) has

increased wireless user exposure and the need for techniques to properly identify sig-

nals for increased security. Fundamental emissions from a device enable it to correctly

operate and may provide unique fingerprints through unintentional modulation due

to alterations caused by hardware and environmental factors. These unique finger-

prints (features) enable the identification of the device manufacturer down to specific

serial number. This research follows previous work [5, 6, 7, 11, 12, 15, 16, 17] and

introduces unique Spectral Domain (SD) fingerprinting for classifying 802.11 wireless

devices. This research focuses on proof-of-concept, versus optimization of parameters.

The following provides a summary of results presented in Chapter IV.

5.1.1 802.11A Classification Performance.

Relative to other research [5, 6, 7], SD RF DNA fingerprint classification perfor-

mance is consistent with the WD approach while demonstrating improved classifica-

tion accuracy over the TD approach for 802.11A signals. In most cases, classification

accuracy is greater than 80% at SNR > 5 dB. At 80% classification accuracy, SD

provides a gain of approximately 8 dB over the TD technique and some improvement

(1%-3%) over the WD technique for SNR = -3 to 25 dB (lower SNRs are more con-

sistent with operational environments). Using a spectral differencing Prop method

discussed in [1], some improvement in performance is observed for specific cases, but

generally fails to improve overall classification performance for the majority of per-

mutations completed.
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5.1.2 802.11B Classification Performance.

All parameters used to process 802.11B signals are taken directly from those used

for 802.11A processing. The resulting performance of SD fingerprinting with 802.11B

signals, using the worst case intra-manufacturer permutation, provides a significant

improvement from that of 802.11A. An improved 802.11B gain of approximately 3 dB

is demonstrated over 802.11A classification, which shows that the SD fingerprinting

technique is a viable classification method, providing improved overall classification

performance.

5.2 Recommendations for Further Research

This section provides recommendations for further research on SD RF DNA fin-

gerprinting. Comparing results from previous research using 802.11A signals, SD

fingerprinting provides performance consistent with the WD approach in [5] while

providing less computational challenges. The following provides recommendation for

further research with the SD approach:

1. Bandwidth Sensitivity Analysis: A post-collection filter bandwidth of BW

= 7.7 MHz was used in this research and was chosen to be consistent with

pervious work in [5, 6, 7]. Since the SD method has proven merit, there may

be another bandwidth which provides more benefit and consistency.

2. Specific Waveform Characteristics: This research focuses on using stan-

dard PSD features for SD fingerprints, while previous research used instan-

taneous amplitude, instantaneous phase, and instantaneous frequency for TD

fingerprints [5, 6, 7, 11, 12, 15, 16, 17]. Other waveform characteristics may

improve accuracy and make the SD method more robust. Previous work [11, 15]

also used standard deviation along with variance, skewness, and kurtosis. The
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later three statistics were chosen here for consistency with [5, 6, 7] and were not

chosen with any optimality criteria. There may be combinations of statistics

and statistics used over specific subregions that provide greater device/class

separability and improved classification accuracy. The number of regions (NR

= 13) was chosen based on analysis at the collected SNR = 40 dB. Different

NR may be better for other SNR values.

3. Process and Parameter Optimization: The process used for this research

was adopted from [5, 6, 7, 11, 12, 15, 16, 17] while not focusing on a single

parameter in the process. From burst detection and processing to signal clas-

sification, many parameters were chosen based on prior work [5, 6, 7] without

focusing on any given factor, parameter, or combinations thereof. Analysis of

specific parameters and combinations thereof may be beneficial.

4. Different Signals of Interest: 802.11A OFDM-based and 802.11B DSSS-

based signals were used here based on work in [1, 5, 15]. Different OFDM

or DSSS signals that are emerging for next generation applications may be

discriminable with SD fingerprinting as well. Additional work could be done

using SD RF fingerprinting with these emerging signals and their appropriate

applications.
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Appendix A. Detailed Signal Collection Procedures

The original collection procedures presented in Appendix A of [15, 11] are pre-

sented in this work for completeness. These collection procedures provide a detailed

process for identifying a signal of interest, collecting its transient signal features,

and converting it to Matlabrusing the Agilent E3238S RFSICS and Vector Signal

Analyzer. The directions below reference screen-shots from the E3238S software for

completeness.

1. Power on the Agilent E3238S RFSICS.

2. Open E3238S application (Figure A.1).

3. Power on the device under test and configure it as necessary.

4. Activate device transmitter and locate its peak in the wide-band search window

(Figure A.2).

5. Zoom in on the signal of interest (right-click and drag to zoom in spectrum

display).

6. Right-click in the left border and select “Tune to Trace” (Figure A.3).

7. Right-click in the left border again, Select “Marker” and Move Radio Button

to “On” (Figure A.4).

8. Move the marker to the current peak of the spectrum display using the icon in

the bottom right of the window (Figure A.5). The marker dictates the collection

center.

9. Right-click in the left border again, Select “Marker to...” and Select “Center

Freq” (Figure A.6).
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10. Now, set the dynamic range of the ADC by going to “Configure”, “Search

Receivers”, “ADC”, “Input Range” and setting it to the lowest value (Figure

A.7).

11. Activate the transmitter and check for ADC overload, if the block in the upper

left corner is red, increase “Input Range” value one step at a time until the

block remains solid blue (Figure A.8).

12. Right-click on grayed out camera in bottom right corner of the main window to

modify the “Snapshot” settings.

13. Change “Status” to “Active”, “Span” to the desired bandwidth, “Duration” to

the desired duration of the collection, “Filename” to the desired, descriptive

filename, click “OK” (Figure A.9).

14. Deactivate the transmitter (if necessary).

15. Click on the now Yellow Camera in bottom right to begin collection.

16. While collection is proceeding, activate the transmitter to collect transient signal

data (Figure A.10).

The collection is then stored as a “Capture” file with the extension “*.cap”.

This file must now be converted to a “*.mat” file for post-collection processing in

MATLABr. The Vector Signal Analyzer software can be used to do this conversion.

1. Open the Vector Signal Analyzer application.

2. Select “File”, “Recall Recording” and choose the desired “Capture” file.

3. Next, select “File”, “Save Recording” and save as “*.mat”.
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The “*.mat” file contains twelve parameters. FreqValidMax and FreqValidMin

are the highest and lowest frequencies of the collection. InputCenter is the center

frequency of the collection. XDelta is the time change between each sample. Inpu-

tRefImped is the input impedance. XUnit and YUnit are the units of measure for

the x- and y-axes of the collection, which are seconds and volts, respectively. Y is

complex signal data of type “single.” InputRange, InputZoom, XDomain and XStart

are additional unused parameters.
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Figure A.1. Initial screen of RFSICS collection

Figure A.2. Wide-band spectral response of the signal of interest.
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Figure A.3. Choose “Tune to Trace” as described in Step 6. Narrow-band view of the
Frequency Content of the Signal of Interest.

Figure A.4. Turn the “Marker” on as described in Step 7.
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Figure A.5. Set the marker to the peak of the display as described in Step 8.

Figure A.6. Force the current frequency of the marker to the center of the display as
described in Step 9.
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Figure A.7. Set the dynamic range of the ADC as described in Step 10.

Figure A.8. Continue setting the dynamic range of the ADC by checking for overload
as described in Step 11.
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Figure A.9. Configuring the “Snapshot” details as described in Step 13.

Figure A.10. Activate the transmitter while the “Snapshot” is being collected as de-
scribed in Step 16.
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The increase in availability and reduction in cost of commercial communication devices (IEEE compliant such as 802.11, 802.16, etc) has
increased wireless user exposure and the need for techniques to properly identify/classify signals for increased security measures. A
communication device’s emission includes intentional modulation that enables correct device operation. Hardware and environmental factors
alter the ideal response and induce unintentional modulation effects. If these effects (features) are sufficiently unique it becomes possible to
identify a device using its fingerprint, with potential discrimination of not only manufacturers but possibly serial numbers for a given
manufacturer. Previous AFIT research has demonstrated effectiveness at RF Fingerprinting using 802.11A signals with 1) spectral
correlation on Power Spectral Density (PSD) fingerprints, 2) Multiple Discriminant Analysis/Maximum Likelihood (MDA/ML) classification
with fingerprints obtained from Time Domain (TD) and Wavelet Domain (WD) statistical features.As used here, Spectral Domain (SD)
fingerprinting uses the Fourier Transform to calculate PSD features for device discrimination. Results here show some improvement over the
WD approach (gain ≈ 3 dB) and significant improvement over the TD approach (gain ≈ 8 dB gain).
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